Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration.
نویسندگان
چکیده
Animals actively regulate the position and movement of their sensory systems to boost the quality and quantity of the sensory information they obtain. The rat vibrissal system is recognized to be an important model system in which to investigate such "active sensing" capabilities. The current study used high-speed video analysis to investigate whisker movements in untrained, freely moving rats encountering unexpected, vertical surfaces. A prominent feature of rat vibrissal movement is the repeated posterior-anterior sweep of the whiskers in which the macrovibrissae are seen to move largely in synchrony. Here we show that a second significant component of whisking behavior is the size of the arc, or "spread," between the whiskers. Observed spread is shown to vary over the whisk cycle and to substantially decrease during exploration of an unexpected surface. We further show that the timing of whisker movements is affected by surface contact such that 1) the whiskers rapidly cease forward protraction following an initial, unexpected contact, and may do so even more rapidly following contact with the same surface in the subsequent whisk cycle, and 2) retraction velocity is reduced following this latter contact, leading to longer second-contact durations. This evidence is taken to support two hypotheses: 1) that the relative velocities of different whiskers may be actively controlled by the rat and 2) that control of whisker velocity and timing may serve to increase the number and duration of whisker-surface contacts while ensuring that such contacts are made with a light touch.
منابع مشابه
Neuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملActive touch sensing: finger tips, whiskers, and antennae
Active touch can be described as the control of the position and movement of tactile sensing systems by reaching out and exploring—sensing by “touching” as opposed to being touched. The active nature of these movements entails precise control of the sensory apparatus, which is task-specific and maximizes sensory information from the environment. This collection brings together a group of articl...
متن کاملWhisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals....
متن کاملCentral signals rapidly switch tactile processing in rat barrel cortex during whisker movements.
Palpatory movements ('active' touch) are an integral part of tactile sensing. It is known that tactile signals can be modulated in certain behavioral contexts, but it is still unresolved to what degree this modulation is related to movement kinematics and whether it stems from tactile receptors or from central sources. Using awake, head-fixed rats, trained to contact an object, we measured traj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 2 شماره
صفحات -
تاریخ انتشار 2009